The Air Force Wargaming Center

PRACTIUM: THE STRATWAR WARGAME

Development of the
StratWar wargame
software

Timothy]. Hallnr

Strat\Wat, a computetized strategic nuclear wargame, developed for the Air
Command and Staff College faced setious political and technical challenges during
its development. It survived to become a success that was voted as the “Highlight
of the Academic Year’” by 500 Air Commuand and Staff College students and
faculty who played the game in its debut at the Air Force Wargaming Center in
spring of 1990. This is an account, including a narrative and a aritical analysis, of the
18-month development of the wargame written by a member of its
programming team.

"The narrative presents the issues tackled by the development team throughout the
project’s lifetime. What were the up-front manpower, schedule, and technical
constraints on the project? What problems, both technical and political, did the
development team face? How did they solve them? How was a large and
inadequately understood legacy simulation integrated into the wargame design?
How was off-the shelf software selected and used? How did the team prepare for
and execute the first operational use of the softwarer The narrative is followed by
an analysis that presents ten lessons extracted from a critical examination of what
went tight and what went wrong during the project.

he Air Force Wargaming Center (AFWC) stages exercises where Air

Force officers are educated through the use of simulation, known as
wargames, to further their understanding of and experience in war-like
situations [1]. Computer simulation is used as one tool to accomplish this
objective. The AFWC is located on Maxwell Air Force Base in Montgomery,
Alabama in the center of the four major schools hosting Air Force officer
professional military education (PME). From 1988 to 1991, I worked as a
software developer within this organization. At my arrival into the
organization, the transition to a new computer-based wargaming system was
encountering difficulties.

!'The views expressed in this document are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

2The Air Force Wargaming Center is today known as the Air Force Wargaming Institute (AFWT).

1 of 33

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
25 FEB 2004 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Development of the Stratwar War game Softwar e (A Practicum) £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Timothy J. Halloran 56 TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University REPORT NUMBER

Cl04-134
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
The Department of the Air Force AFIT/CIA, Bldg 1252950 P St.

. . 11. SPONSOR/MONITOR'’ S REPORT
Wright-Patter son Air Force Base, OH 45433 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE UU 33
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

PRACTIUM: THE STRATWAR WARGAME

In the mid-1980s the AFWC was formed, in-part, to transition the PME
wargaming exercises from simulations hosted on remote Honeywell
mainframes located across the city at Gunter Air Force Base. They were
accessed via dial-up teletype terminals to a large state-of-the-art hardware—
software wargaming system dubbed the Command Readiness Exercise
System (CRES). The legacy simulations consisted of Honeywell FORTRAN
programs used for various wargaming exercises (e.g., tactical, theater, and
strategic) with primitive user interfaces (e.g., batch input and line-printer
reports). CRES was designed to replace the Honeywell with in-house
computer facilities. CRES used a Control Data Corporation (CDC) Cyber
mainframe located in the AFWC building connected via setial lines to roughly
100 IBM PCs that were spread out among the game rooms and development
areas within the building. The Cyber mainframe hosted a large FORTRAN
based “Wargaming Engine.” The PCs hosted player interfaces and acted as
smart terminals to the Cyber. CRES was to be a general purpose wargaming
system and was designed to support several wargames of various types. The
AFWC building itself was designed and built to support CRES. Itis a 56,000
square foot facility containing 22 seminar or game rooms and a “white” room
to host game controllers as well as computer room facilities and office space
for staff.

By 1988, for many reasons, the software development of CRES by a large
government contractor had encountered problems. The contractor had put
the bulk of their efforts into the design and implementation of the
FORTRAN wargaming engine and done little to develop specific wargame
instances usable by the PME schools—a critical capability from the
Government point of view. However, contractor costs on the fixed-price
contract were being overrun and the contractor was focused on finishing
work by meeting only explicit contractual requirements. The AFWC
leadership was also under increasing pressure from the PME schools to
deliver a useable wargame exercise using the highly touted CRES. Against
this backdrop the AFWC leadership decided to develop, using in-house Air
Force, or “blue-suit” developers, a CRES nuclear wargame for the Air
Command and Staff College (one of the four primary PME schools). I was
one of the team involved in the development of the CRES nuclear wargame,
later named S#ratlV ar.

This practicum examines the 18-month development of the StratWar
wargame. The practicum is divided into two major sections. The first section
presents a longitudinal narrative of the development of the wargame from its
beginning to its first use by ACSC students. The narrative is presented by
breaking the project up into rough temporal phases (corresponding, in the
spirit of StratWar, to the flight phases of an ICBM) as follows:

2 of 33

PRACTIUM: THE STRATWAR WARGAME

The second section of this practicum undertakes a critical analysis of the
StratWar software development building upon the issues described in the
narrative. 'The analysis is organized around “what went right” and “what
went wrong” during the project and proposes ten enduring lessons for

Lannch—the genesis of the project. This section describes the
operational concept of StratWar, introduces the development team,
and points out up-front constraints (schedule, manpower, and
technology) on the effort.

Boost phase—the shaping of the wargame development from an idea
to a tractable concrete project. This section describes the major
efforts by the development team in the first 6-9 months of the
project: the tedious reverse engineering effort to better understand
the wargaming engine and the planning and design effort toward
building a new user experience for the wargame.

Midconrse phase—the StratWar development team, now a synergistic
team making steady progress, is faced with significant technical and
political problems as the StratWar software begins to take shape.
First, two technical problems are described: creation and testing of
the automatic targeter and the orchestration of the wargaming engine
during the execution phase. Second, two setious political problems
are described: (1) senior management’s insistence for color player
input forms and (2) technical leadership’s insistence for unplanned
testing to ameliorate their concerns about the robustness of the
unorthodox network distributed design of the StratWar software.

Terminal phase—Afinishing up development and hosting the first
successful StratWar exercise for ACSC. This section discusses the
last minute problems encountered right before and during the first
StratWar exercise. These include: player training, dealing with 2167A
documentation, and some graphical user interface design flaws.

software projects. A summary of ““what went right” includes that StratWar

wotked and was a success;

had, overall, throughout its development stable user requirements;
had an end goal, the ACSC exercise, to guide it;

had an effective development team

= that confronted project risks and

= made effective use of off-the-shelf software; and

had no political “enemies.”

3 0of 33

PRACTIUM: THE STRATWAR WARGAME

A summary of “what went wrong” includes that StratWar

* didn’t understand senior management needs;
= trusted, for StratWar, the contractor architecture of CRES; and

® purchased all the Sun 3861 workstations before the project began.

The ten enduring lessons extracted from the analysis of “what went right”
and “what went wrong” with the StratWar development project, and
informed by the authot’s subsequent experience, are

1. Even successful projects encounter serious crises. Don’t give up at
the first sign of trouble—take responsibility and work toward
solutions.

2. Reasonably stable requirements can mitigate the risk of a tight
software development schedule.

3. Visible goals can help focus the team on the whole rather than the
parts and avoid the serious problem of sub-optimization.

4. Effective teams take time to coalesce. Conflict is a normal part of the
teambuilding process. Software practitioners must be open and
motivated to learn new knowledge (e.g., technical or domain) all the
time.

5. Mitigate risks eatly in the project—avoid the natural tendency to
focus on “comfortable” (i.e., low-risk) work early in the project.

6. Make sure off-the-shelf software choices are deliberate decisions—
not technical accidents.

7. Realize political “enemies” to your project may exist—keep senior
management informed about problems and avoid surprises.

8. Work to elicit critical senior management requirements—realize what
is important to you may be very different than what is important to
them. Use Project Management Reviews, or a similar technique, to
inform and stay in contact with senior management.

9. Understand, document, and analyze your software’s architecture.

10. Purchase oft-the-shelf computer hardware as late as possible in a
project to lower risk and exploit Moore’s law—both in terms of
invested capital and hardware capability.

It is important to note that this practicum only describes a single experience.
Hence, the wvalidity of its lessons is suspect—to a degree. In addition,
StratWar was a Government software development effort and may not be
similar to all commercial software development efforts. For example, the
StratWar development team did not have to deal with the dynamic of another
company developing a competing product. However, it may be considered

4 of 33

PRACTIUM: THE STRATWAR WARGAME

similar to an in-house software development effort undertaken within a
commercial company. Finally, the size of the StratWar software is modest—
between half to three-quarters of a million source lines of code. About half
of this code was newly developed during the StratWar project. The
remaining half consisted of the wargaming engine code previously developed
by the CRES contractor.

The primary and, I believe, enduring lesson of this practicum is to give the
reader a sense of the troubles and even chaos encountered during a real-world
software development project—even a successful one like StratWar. Armed
with a decade of further software development experience I'm confident
experienced practitioners will note similarities to personal experiences.
However, if you find yourself asking: “What was wrong with these people?
Why didn’t they hire better people? Why didn’t they use software process X
method Y], or tool Z?” you are in danger of missing the point: there is never a
substitute for judgment, teamwork, individual hard work, talent, and
sometimes luck. In my experience with StratWar and every software
development project I have been involved with since, not all of them
successful, every bit of knowledge about computer science and software
engineering I knew has been put to the test—if you don’t know it you can’t
apply it—and driven me to learn more.

5 0of 33

PRACTIUM: THE STRATWAR WARGAME

Narrative

This section describes StratWar development from its genesis in fall of 1988
to the first operational use of the game by ACSC players in spring of 1990.

Launch
In fall of 1988 I was assigned to the StratWar development team:

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
CENTER FOR AEROSPACE DOCTRINE, RESEARCH, AND EDUCATION
MAXWELL AIR FORCE BASE, AL 36112-5532

REPLY TO
anor WG

sussect. CRES Nuclear Exercise Development Team

o WGSS (2Lt Tim Halloran)

1. I've selected you to be a member of the CRES Nuclear Ex-
ercise development team. This team will implement the game
design previously agreed to by Air Command and Staff College
(ACsC) and will be responsible for all activities leading to
the execution of the wargame. Lt Col Burns is the team chief
and overall project director. Major Kwalic is the ACSC rep-
resentative to the team.

2. You will be assigned specific tasks for this project by
Lt Col Burns through his primary assistants Major Lee, WGTA,
and Capt Johnston, WGSS. These tasks include:

a. Developing, implementing, and documenting the new
Computer Program Configuration Items (CPCIs) of Workstation
Toolkit Subsystem (WIS) and Game Driver Subsystem (GDS).

b. 1Integrating the new Sun 386i workstation hardware
and software into the CRES architecture.

c. Testing of the Wargame Subsystem CPCI leading to
identification of problems, prioritization of proposed code
changes, and code modifications.

d. TIdentifying database requirements, locating the ap-
propriate data, and incorporating that data into the Cres
Nuclear Exercise.

e. Participating in the exercise testing, preparation,
execution, and post-exercise analysis phases.

3. The time available to develop and prepare this exercise
is extremely limited; therefore, longer hours and the pos-—
sibility of weekend work may be necessary. I expect your

best efforts and full support to complete this exercise de-

velopment.
/-

GARY R. WARE, Colonel, USAF
Director
Air Force Wargaming Center

Strength Through Knowledge

As the above letter alludes, the StratWar project began with some constraints
on its operational concept, development team, and technology.

6 of 33

PRACTIUM: THE STRATWAR WARGAME

Operational concept

StratWar was conceived to be a four day exercise where two teams of ACSC
students develop and simulate execution of a Single Integrated Operational
Plan (SIOP).

The SIOP is the overall plan that controls the US strategic (i.e., nuclear)
missile, bomber, and submarine forces. It defines options for the President
to execute in crisis. In StratWar, a completed SIOP contains ten execution
options—each option is a self-contained pre-planned course of action usually
increasing in severity from 1 to 10. For example, option-1 may disperse the
bomber fleet to remote bases (to reduce vulnerability) and raise the alert level
of the strategic missile and submarine forces, while option-10 might launch all
nuclear missiles and commit all bombers to their assigned targets. The
primary purpose of StratWar was to expose mid-career officers to some of
the issues and complexity of creating a SIOP.

One group of students, called the “blue” player team, played as the United
States while a second group of students, called the “red” player team, played
as the USSR. A third group, composed of AFWC staft assisted by the ACSC
faculty, acted as a “white” control team which monitored and guided the
exercise. During the first three days of the wargame, called the planning phase,
players would create, based upon a fictional world scenatio developed for the
exercise, a SIOP. During the fourth and final day, called the execution phase,
the two sides would be placed in the role of national authorities in a highly
tense world situation and be allowed to execute the planned SIOP.

Team

The development team was hand-selected by the center director and led by a
project manager, I.t Col Burns. The StratWar project used a matrix
organization with team members drawn from the various major functional

branches within the AFWC.

= Operators. Air Force officers with real-world operational expetience in
the areas simulated by any wargame. This group ensures the validity
and credibility of the wargame. In the case of StratWar, the operators
all had either served as missile launch officers or bomber crews and
some had staff experience involving the national SIOP. They
interacted with the ACSC faculty representatives to ensure the
wargame would meet the school’s educational objectives. The
project manager, Lt Col Burns was drawn from this group which, for
StratWar, also included Lt Col Lee and Lt Col Bryant, and Major
Wolczek.

7 of 33

A Sun 386i workstation

PRACTIUM: THE STRATWAR WARGAME

= Intelligence officers. Specialists on the world situation and how
information on the world situation is collected and distributed. For
StratWar, this group consisted of Capt Catoe and Capt Witte.

The operators and intelligence officers worked together to develop
the game databases which were carefully documented such that all
data was drawn from unclassified sources. In addition, they worked
with the programmers on the game user experience. Finally they
wrote the StratWar player handbook, a user manual given to ACSC
students.

* Programmers. 'The group responsible for development, testing,
documentation, and maintenance of the StratWar software. In
addition to the author, Lt Halloran, this group included Capt
Johnston, Capt Kross, Lt Hutchins, L.t Meissner, SSgt Givens, and
SSgt Adams.

= System administrators. 'The group responsible for operation and
administration of the AFWC computer systems. The primary system
administrators involved with StratWar were Capt Atwell and Sgt
Branson for the Sun computers and Mr. Pitts and Mr. Davis for the
Cyber mainframes.

Technology

Both hardware and software technology constraints were placed upon the
StratWar software development. The hardware for the project consisted of a
development and production Cyber mainframe, player IBM XT PCs, and
player Sun 3861 workstations.

The Cyber mainframes and the IBM PCs were already installed at the AFWC
at the start of StratWar development—they had been procured and used by
the CRES software contractor. The Cyber mainframe was the platform the
wargaming engine ran on. The IBM PCs functioned as (slightly) smart
terminal interfaces to the mainframe and were connected to it by serial cables.
The IBM PC hosted the contractor developed Game Driver Subsystem
(GDS) and the Workstation Toolkit Subsystem (WTS). GDS was the user
interface on the PC for a wargame, while WTS was a communications library
which helped GDS talk to the mainframe—both of these subsystems, while
they worked, were perceived by the Government as failures that needed to be
redeveloped from scratch—a richer, more interactive, user experience than
they could provide was desired for StratWar.

The Sun 3861 workstations were new to the AFWC. Prior to the start of
StratWar development, the AFWC leadership had decided to purchase
enough Sun 3861 workstations to augment or replace the IBM PCs. This
would put a single Sun 38061 in every “red” and “blue” game room. (The Sun

8 of 33

PRACTIUM: THE STRATWAR WARGAME

3861 workstation consisted of a 25-Mhz Intel 386 CPU, 4MB RAM, a 360MB
hard disk, an Ethernet adapter, and a 15” monitor capable of 1152x768 pixel
resolution at 256 colors.) AFWC leadership had been highly impressed with
the state-of-the-art graphics capabilities of the 38061, a capability lacking on the
IBM PC, and the capability to “emulate” MS-DOS, to support a smooth
transition from the IBM PCs. Using both graphics and MS-DOS emulation
together proved unworkable, however, because the Sun 386i, which ran a
variant of BSD UNIX called SunOS, only emulated MS-DOS in a small
320x240 pixel window within the SunView windowing system (Sun wanted
the 380i to serve as a “bridge” that allowed MS-DOS developers to port their
applications to UNIX). To access the full graphics capabilities of the Sun
3861 one had to work in UNIX not MS-DOS. Consequently, StratWar was
developed under UNIX not MS-DOS.

The primary software constraint was that the wargaming engine was required
to be used for simulation during the execution phase. It was understood by
the programming team that the change to the Sun 3861 would require new
development of the entire user interface for StratWar.

Launch wrap-up

At project launch, team motivation was high—the challenge and importance
of being directly involved with the creation of the first operational CRES
wargame was exciting. The reality of the scale of this effort, hinted at in the
tasking letter’s notes about “longer hours” and “weekend work,” would soon
become apparent to the team as the project got underway.

Boost phase

The early StratWar development work comprised two distinct engineering
efforts: understanding how the wargaming engine worked and planning the
new software development on the Sun workstations.

Understanding the wargaming engine: the “operator cave”

The operators and intelligence officers along with Lt Meissner and SSgt
Givens were faced with the task of making the contractor-provided
wargaming engine usable for the StratWar game. Although documentation
for the wargaming engine existed, the documentation was closer to a detailed
reference manual on input syntax rather than a description of how the
simulation behaved (i.e., syntax-focused rather than semantics-focused). In
addition, the team had very limited interaction with the contractor who had
created the wargaming engine. Hence, understanding strategic nuclear
simulation in the wargaming engine became a reverse engineering effort that
would go on for roughly 8 months.

The wargaming engine accepted input only in the form of an orders file. This
file contained a series of orders, in plain text, for the simulation. These

9 of 33

PRACTIUM: THE STRATWAR WARGAME

included both simulation data and directives. Simulation data included
information such as base locations and assignment of aircraft to bases.
Simulation directives included tasks such as when (in simulation time) to
output reports, read another orders file, output a “checkpoint” (a saved game
that could be restarted later), and terminate the simulation. Once an operator
had created an orders file, running the wargaming engine was straightforward.
A batch job was submitted to the Cyber to run the wargaming engine which
would simulate until the termination directive was reached. Reportts,
representing simulation results, would appear in files and could be examined
by the operators. Based upon examination of these results the orders file
could be modified and the entire process repeated. ..over and over again.

This effort was tedious and the frustration levels often ran high early in the
effort. The team lived in a small room, a sort-of “operator cave,” filled with
Cyber mainframe terminals and wall papered with mainframe printouts of
orders files and FORTRAN code, maps of the US and USSR, and to-do lists.
Complaining, early on, about the exacting orders syntax and the brittleness of
the wargame engine itself reached such a level that the team self-imposed a
“complaint tax’—no complaining was allowed about the wargame engine
unless you put a quarter into a large glass jar located on a cluttered table in the
middle of the room.

Passersby during this time would peer into the cave door’s little window in
wonder at the busy group working in this cluttered room filled with maps and
line printer paper on every wall and draping every table. Most of the group
would be hovering over amber mainframe terminals from which someone
would jump up, toss money in a jar, and then rant loudly for a minute or two
before sitting right back down at the same terminal to continue with barely a
glance from the others.

Planning the development of a the StratWar user experience

The second team, composed primarily of programmers but guided by Lt Col
Burns, had a much different task. They would create the entire user
experience for StratWar using the Sun 3861 workstations and develop control
software to drive and communicate with the mainframe for the execution
phase of the wargame.

The most severe risk for this group was soon apparent: technical knowledge.
None of the team, except Capt Atwell, had ever used—Iet alone developed
software for—a UNIX workstation like the Sun 3861 before. Capt Atwell
had encountered one briefly in a class he had taken at the University of Utah.
Thus, Capt Atwell immediately became the de facto system administrator.
Capt Kross had recently graduated from the Air Force Institute of
Technology where he had worked on the use of a relational database
management system (RDBMS) for wargaming. Lt Halloran and Lt Hutchens

10 of 33

PRACTIUM: THE STRATWAR WARGAME

were recent graduates of the computer science program at the Air Force
Academy and came to the project with Pascal and assembly language
experience. Capt Johnston focused on management of the project and would
not be involved with the day to day software development. The core
programming team had a solid foundational knowledge of computer science
but lacked knowledge and experience with the specific hardware and software
technologies being used for the StratWar project. Despite this problem, the
team faced a large software development effort with a hard 18-month
deadline. The approach taken to mitigate this risk was two-fold: (1) make
heavy use of off-the-shelf software and (2) select a software design that would
minimize the amount of new technologies each team member would be
required to learn.

Off-the-shelf software

The selection and use of off-the-shelf software hinged upon the judgment of
two team members: Capt Atwell for the X Window System and Capt Kross
for the Oracle RDBMS.

The smooth introduction of X

In 1988 Sun workstations provided a graphical windowing system, a mouse,
and built in Ethernet. Sun, like all workstation vendors at that time (e.g.,
Apollo, Digital, HP, and Tektronix) provided a proprietary windowing system
with proprietary APIs—for Sun it was SunView. SunView seemed the
obvious windowing environment to program the graphical map situation
display for the StratWar execution phase. However, Capt Atwell advised that
we use the X Window System instead. X was a research project developed at
MIT (using ideas taken from the Stanford W windowing system—hence the
name). Capt Atwell believed that X would replace all proprietary UNIX
graphical windowing systems and provide a much needed way to move
graphical applications from one vendor’s workstation to another. In addition,
X allowed displaying a graphical application remotely over a network (ie.,
running an application on one machine (like a mainframe) but displaying its
user interface on another (like a Sun), much like telnet already provided for
command line UNIX users).

Without fanfare, X was selected by the development team for use over
SunView and Capt Atwell obtained the source code for X11R4 from MIT
and compiled it for the Sun 386i. Savvy use of X would solve several difficult
technical problems encountered during StratWar development and having its
source code would, in fact, save the project from a later political crisis. The
introduction of the Oracle RDBMS would not go so smoothly.

The rocky introduction of Oracle

Data management for all the legacy wargames was file-based. The idea of
using a RDBMS had been researched at AFIT but had never been used for a
production wargame. The AFWC, at this time, sponsored several AFIT

11 of 33

PRACTIUM: THE STRATWAR WARGAME

simulation and wargaming research projects being conducted at Wright-
Patterson Air Force Base in Ohio. Capt Kross, a recent AFIT graduate and
member of one of the AFIT/AFWC research projects, advocated use of an
RDBMS to help mitigate the risk imposed by the 18-month development
schedule. Capt Kross was especially interested in the so-called “4GL” tools
provided with commercial database products. These tools allowed creation
of terminal-based text input forms and reports from database tables. In
addition, the flexibility of the RDBMS would allow rapid change of the data
schema as the operators gained understanding of what information the
wargaming engine required. AFIT had conducted its research projects using
the Ingres database product; however a new product, called Oracle, was of
interest to Capt Kross due to a reputation for supetior tool support. Both
products were brought in and evaluated by Capt Kross and Lt Hutchins and
Oracle was the clear winner—the Oracle tools, SQI*Forms and
SQL*Reportwriter, were supetior to the Ingres offerings at that time and the
core RDBMS was adequate in terms of performance. Cries of “Ingres sucks;
Oracle rocks!” were often heard in the cubicles during this tool-focused
evaluation.

Despite the outcome of the Kross—Hutchins evaluation, monetary and
political obstacles were raised against using Oracle for StratWar development.
First, Oracle was expensive to license. Second, a historical bias towards use
of file-based systems existed among senior AFWC technical leadership.
Third, despite supporting RDBMS use for a production wargame, the AFIT
research teams strongly preferred the AFWC adopt Ingres rather than Oracle.

Lt Col Ellertson, the functional head of the programmers, system
administrators, and computer operators at the AFWC, had a bias toward use
of file-based systems—they were proven, fast, conceptually simple, and free.
The RDBMS was perceived as slow, complex, and costly. However, Capt
Kross was able to make a convincing case, backed up by research experience
at AFIT and the in-house evaluation, that flexibility would be increased and
development time would be reduced, albeit with the trade-off of licensing
costs, through the use of an RDBMS. Thus, Lt Col Ellertson agreed to
support using an RDBMS for StratWar. However, both he and AFIT would
prefer StratWar use Ingres. From Lt Col Ellertson’s point of view, the
AFWC already had contracts in place for Ingres due to its use on wargaming
research at AFIT. Augmenting an existing Government contract for Ingres
was a simple task compared to engaging the bureaucracy to create a new one
for Oracle. The AFIT researchers, unconcerned about contracting issues,
argued the superiority of Ingres based upon capabilities of the core database
management system. Ingres, at that time, supported far more of the relational
capabilities deemed significant by researchers than Oracle.

12 of 33

PRACTIUM: THE STRATWAR WARGAME

Oracle, despite all these obstacles, did win out over Ingres. Capt Kross was
able to convince Lt Col Ellertson, an experienced mainframe wargame
programmer, that the surrounding tools and not the database server were the
largest benefits of the RDBMS for StratWar—primarily to mitigate schedule
risk. In addition, Government contracting officers were able to negotiate a
reasonable price for Oracle software licenses. Hence, Oracle was licensed
and installed for use on the Sun 386i, whete it would become the backbone
of all new StratWar development, and the Cyber mainframe, where it would
languish unused.

Constraining the software design

The overall software architecture and design for StratWar evolved during
development but followed two key constraints identified by the programmers
carly on: limiting use of the ill-understood wargaming engine to only the
execution phase and limiting the amount of new technology each
programmer had to learn to be productive.

Early on, the programming team noticed that the wargaming engine was only
required to simulate the execution phase of StratWar. Hence, a design
decision was made to develop and execute the entire planning phase of
StratWar on the Sun workstations. The planning phase of the game would
use a repository-based architecture. All planning data would be stored in the
Oracle RDBMS and the players would interact via forms and reports built
using SQL*Forms and SQL*Reportwriter. Hence, for the first three days of
the game, red and blue players would interact with the game using a menu of
text based forms run on the Sun workstation in their seminar room.

As the software development effort began to take shape, the list of training
required by programmers started to grow long and daunting: UNIX, X
graphics programming, C language programming, SQL, Oracle tools
(SQL*Forms, SQL*Reportwriter), serial communications to the Cyber, and
so on. Unfortunately, there was very limited time and funding to send
programmers to formal training—the team would have to learn almost all the
unfamiliar technologies on-the-job. To mitigate this risk the design was
partitioned such that no programmer would have to learn all the technology.
Roughly, the division was drawn between Oracle tools, X graphics
programming, and any work on the wargaming engine. Capt Kross and Lt
Hutchins (later joined by TSgt Adams) would work all Oracle development,
Lt Halloran would work all X development, and Lt Meissner and SSgt Givens
would work any required changes to the wargaming engine. Some overlap
occurred as the project progressed but, in general, this scheme proved
workable and was successful.

One further division emerged which would benefit the project. That was a
clear separation of system administration of the Sun workstations from the

13 of 33

PRACTIUM: THE STRATWAR WARGAME

software development effort. Lt Hutchins, who fancied himself a “hacker” in
the original sense of the word, advocated that all the Sun programmers
should have carte blanche o/ (administrative) access to the Sun computers.
Capt Atwell resisted and was able to quickly setup a reasonable stratum of
tasks that required him and tasks that programmers could perform. In
practice, this simplified learning for both groups—the programmers focused
on learning how to use UNIX while the administrators focused on learning
how to administer UNIX.

Boost phase wrap-up

The beginning of technical work on StratWar was a difficult period—filled
with long hours and frustration. The operators were holed up in the
“operator cave” and the programmers were busy trying to figure out, with
sketchy but growing technical knowledge, how to structure and carryout the
software development efforts. The decisions described above were often
only reached after long arguments between team members with starkly
differing ideas about what the best solution was. To an outsider the project
might have appeared doomed—a complaint jar full of money but no working
strategic simulation, a group of programmers arguing for weeks over what
data management system to use when they could hardly edit a text file on
their computers, system administrators fumbling around with coax cable and
transceivers draped around and over office cubicles trying to get the new
“PCs” to communicate when mainframe terminals always worked properly.
However, appearances can be misleading, and in this case the formation of a
solid team was underway, risks were being tackled—not being ignored—and
progress was being made toward understanding how to construct the
complete StratWar exercise for ACSC.

During this period the overall design for StratWar came together. It had
transitioned from an idea to a concrete plan. The operational concept of the
StratWar game, developed by Lt Col Burns and the ACSC faculty
representatives, remained stable. This was critical to the technical team as
they could work to solve the issues described above (reverse engineering, off-
the shelf software selection, and technical training) without major shifts to the
core user requirements.

Midcourse phase

By roughly 10 months into the StratWar development project a nascent
wargame had been created. The Oracle forms and reports were well
underway for the planning phase of the wargame. SSgt Adams had joined
Capt Kross and Lt Hutchens to assist with development of these forms
(roughly 60 were required). The operators had uncovered most of the
wargaming engine functionality needed for the execution phase of StratWar
and subsequently the Oracle database schema on the Sun workstations was
experiencing less change. Lt Halloran had developed a graphical map

14 of 33

PRACTIUM: THE STRATWAR WARGAME

situation display for the execution phase that tracked missile, bomber, and
submarine activity and allowed player interaction. Requirements feedback
from the operator team and the ACSC faculty representatives about the
emerging wargame was ongoing and positive.

Progtress at this point in the project was steady—a strong development team
had emerged and completion of the project, on time, seemed possible.
However, during this time period (from roughly the tenth to the sixteenth
month of the 18-month project) several serious technical and political
problems emerged that could have made the project fail. This section will
describe four of the most serious of these problems, two technical and two
political, and how they were solved—some by hard work, some by creativity,
and some by luck.

Technical troubles

The StratWar software design had many technical risks: some were caused by
the evolving technical knowledge of the programming team, while others
were due to the tight schedule of the project. Most of these risks did not
materialize into real problems and many that did were straightforward for the
team to deal with. A few caused serious problems that had to be dealt with
for the project to succeed. All of these involved communication between the
“front-end,” the term used for the collection of all the software hosted on the
Sun workstations, and the wargaming engine. Two that caused serious
problems were game data duplication and orchestrating the execution phase.

The automatic targeter and game data duplication

The transition from the planning phase to the execution phase required that
the student’s SIOP plan be output into a form the wargaming engine could
simulate. This was troublesome because the wargaming engine simulated at a
very low-level (e.g., base bomber-1 and bomber-5 at base-1, fly bomber-10 to
location x, launch ICBM-50 at location j, etc.) while the student SIOP
planning was more aggregate (base 50 bombers in this region, this target has a
higher priority than this one, allocate 5 ICBMs at this target priority group,
etc.). To translate the student SIOP into a form the wargaming engine could
simulate, a program called the “automatic targeter” was conceived. This
program was a large Oracle program written in Pro*C (a C program with
SQL statements embedded in it) by Capt Kross and Lt Hutchens. This
program encountered several problems.

First, the use of Pro*C proved troublesome. The Oracle team, unlike the X
team, wrote very little C code and had difficulties with the tricky portions of
the language. In addition, the Pro*C program was pre-compiled into C
source code—this made program crashes difficult to debug due to the
rewriting of the program source code by the pre-compiler. Second, the
program was slow. The final program took 2 to 3 hours to run during the
first StratWar game. Hence, testing at scale was tedious. Finally, and most

15 of 33

PRACTIUM: THE STRATWAR WARGAME

seriously, data inconsistencies between the front-end and the wargaming
engine were generally discovered by this program.

The operator team that developed the StratWar exercise data was the same
team who in the “operator cave” used orders files to figure out how the
wargaming engine simulated strategic nuclear war. Due to this group’s
comfort with the orders file format and the aggregate nature of front-end
SIOP planning, the technical team decided that only the minimum world
situation data required for planning would be loaded into Oracle. The full
world situation data would exist in a master orders file for the wargaming
engine. The subset in Oracle would be derived from this master. After the
automatic targeter was executed, the resulting orders file fragment would be
combined with the master orders file to produce a full StratWar orders file
suitable for simulation by the wargaming engine.

The problem with this scheme was that if you ran the automatic targeter and
the wargaming engine crashed while executing its output, you were unsure if
you had a data problem or a code problem. This was a tremendous
architectural mistake: consequences included a schedule cost to the project
and aggravation to the team. The programmers and the operators had to
maintain consistency between the master orders file and the Oracle subset of
this data at a time in the project when the programmers badly needed the data
to stay the same so they could test software and the operators badly need the
data to change so they could meet the operational requirements of the
wargame. This mistake was never solved for StratWar—Iater CRES games
would require that all scenario data be managed in Oracle so that it was easy
to maintain several different scenario sets for software testing independent of
the ongoing exercise data development.

Orchestrating the execution phase

The execution phase, the fourth and last day, of the wargame required
carefully orchestrating nearly all the software developed for StratWar. The
wargame engine would simulate, in roughly twice real-time, the unfolding of a
simulated nuclear war using the “red” and “blue” SIOPs developed in the
planning phase of the game. Each “red” and “blue” player room would have
a polar situation map, developed by Lt Halloran using X, running on the Sun
workstation which would be updated every 2 minutes. The players used one
of the IBM PCs (acting as a vt100 terminal connected to the Sun workstation)
to input orders and send email to the opposing side. Game controllers, called
the “white” team, composed of AFWC operators assisted by ACSC faculty
needed to be able to start, pause (for academic discussion), speed up, or slow
down the simulation at any time. They also, unknown to the students, could
create events that might raise tension between the opposing sides (e.g., make
phantom missiles or bombers appear on one side’s map display). Eleven
games would be played at the same time using 22 player Suns and PCs with

16 of 33

PRACTIUM: THE STRATWAR WARGAME

all 11 wargaming engines running on a single Cyber mainframe.
Orchestration of execution day eventually worked but the road traveled was

very rocky.

The risks involved with the execution phase were not fully confronted early in
the StratWar development. This was due, in part, to a trust in legacy
capabilities. The CRES contractor had developed a toolkit capability to
communicate with and control the wargaming engine on the Cyber
mainframe from the IBM PCs. The original technical plan, visible even in the
tasking letter from leadership to the development team, was to “clone” this
capability on the Sun workstation. This part of the project was the
Workstation Toolkit Subsystem (WTS). Lt Hutchins took on this task as a
side-project and to learn the C programming language. WIS programming
pre-dated work on the automatic targeter discussed above. WTS was plagued
with problems from its beginning. Lt Hutchins rarely had enough time to
devote to it, and the serial connection to the Cyber from the Sun was prone
to intermittent failure, requiring a reset at the mainframe terminal controller
to fix it, so progress was slow and tedious. In addition, WTS was the only
time we lost the source code for a program. Lt Hutchins had added to the
WTS program the ability to upload a file from the Sun to the Cyber using the
x-modem protocol. This ability would be used to place an order file fragment
(e.g., disperse my bombers, execute SIOP option 2) onto the Cyber for the
wargaming engine to read. WIS would upload the file to the Cyber and then
delete it. Unfortunately, the file used for the first test was the C source code
for WTS and only half the program worked—the copy to the Cyber failed
but the source code was deleted from the Sun disk. Capt Atwell was able to
recover the source, but only an older version, and roughly 2 weeks of work
had been lost and the overall WTS development effort would never recover.

A second serious risk was the capacity of the Cyber mainframe. Execution
day required 11 wargaming engines to be running simultaneously on a single
Cyber for roughly 4 hours. The 11 simulations needed to be able to simulate
at a rate roughly twice wall clock time (i.e., 2 minutes of simulation passed for
each minute of wall clock time). Early on, the operators working with the
wargaming engine in the “operator cave” expressed concerns that this might
not be possible—they were having difficulty getting 3 or 4 wargaming engines
to run simultaneously at a game time to wall clock time ratio of 1 to 1.

Faced with unreliable WTS software and a Cyber mainframe not capable of
running 11 simulations at a reasonable rate, the project clearly had a large
problem—one that could have caused the entire project to fail. In this case,
however, the StratWar development got lucky—both problems disappeared
because the mainframe and its serial connections did as well.

17 of 33

PRACTIUM: THE STRATWAR WARGAME

A separate AFWC project had ported a legacy Honeywell FORTRAN
wargame to the Cyber and a PME school wargame had been hosted at the
AFWC using this software. Although the overall exercise was successful, at
least from the student point of view, the automated portions of the exercise
had been a disaster. In a nutshell, serious capacity and communication
problems had occurred while using the Cyber version of this wargame. After
a careful investigation and analysis of the problems, AFWC leadership
decided to replace the Cyber mainframes with newer machines that had,
roughly, six times the capacity of our current ones, which had been around
since the contractor started development of the CRES wargaming engine.
Far more important to the StratWar development was the fact that the new
mainframes used TCP/IP Ethernet communications rather than serial lines:
the mainframe could now communicate with the Sun workstations via the
network rather than via a serial cable.

We now had a Cyber capable of simulating 11 wargaming engines for
StratWar faster than the desired speeds and talking to the Sun workstations
via the network. However, orchestrating the execution phase was still an
unsolved problem. The addition of the mainframe network capability meant
the WTS had to be thrown out—a completely new design was required. Lt
Hutchins was really busy with the Oracle front-end work and work on the
automatic targeter loomed. Because the map situation display was nearly
completed, Lt Halloran took over the effort.

The X Window System enabled real-time control of the execution of the
wargaming engine. The new Cyber included a client-side implementation of
the X protocol. Lt Halloran wrote 500 lines of C code that linked into a
FORTAN interface developed by Lt Meissner. When the wargaming engine
was started, it now displayed a small clock window on a Sun workstation—
taking advantage of the ability provided by X to separate the client program
from the display. This small clock window displayed the current simulation
time of the wargaming engine. The clock window also registered several
memorty areas in the X server that allowed another X program to control the
execution of the wargaming engine. This second program, used by the
“white” controller team, provided a graphical user interface for wargame
engine control (e.g., stop, start, pause, set or change the ratio of wall clock
time to simulation time).

To transfer data back and forth between the Cyber and the Suns, NES was
the obvious choice. The Network File System (NEFS) developed by Sun was a
de-facto industry standard that allowed disks on remote computers to appear
local. Once the new Cyber was installed, using NFS was attempted for
StratWar by Lt Halloran—it failed. The Cyber implementation of NES only
allowed the mainframe to act as the NS server (i.e., you couldn’t mount Sun
disks to make them visible to the mainframe). Hence, the approach was to

18 of 33

PRACTIUM: THE STRATWAR WARGAME

have each Sun workstation “mount” (i.e., attach) to a disk on the mainframe.
This approach didn’t work. The problem was that the Cyber NIS server
implementation maintained no consistency between the disk state seen via
NES and the disk state seen directly on the mainframe. Wargaming engine
orders files copied from the Sun via NES just didn’t exist when the
wargaming engine tried to read them. CDC claimed our use of NFS was the
problem because, from their point of view, NES only allowed “lesser”
machines, like our Sun workstations, to use reliable storage on the mainframe.
After a good deal of argument CDC did provide us with a version of NES
that maintained consistency—at the cost of using over 80% of our
mainframe CPU capacity toward this purpose. Lt Halloran had to give up on
using NES due to these problems with the CDC off-the-shelf software. The
final solution for the wargame was to use FIP (file transfer protocol). FIP
was a well established tool that encountered no consistency problems on the
mainframe and had a very low resource cost on both the mainframe and the
Sun. However, FTP required more programming work as it operated at a
much lower level of abstraction than NFS. Lt Halloran, assisted by the
Cyber and Sun system administrators, had to create a slew of special purpose
scripts to drive FTP communication between the Sun and the Cyber.

Hence, albeit later than expected, orchestration of the wargame engine was
successfully engineered into StratWar. It was now possible to support the
execution phase of the wargame. At this point, demonstrations of the
developing wargame became far more dramatic and interesting because the
execution phase could be shown. SIOP options could be launched and the
effects seen on the Sun map graphics situation display—sometimes
thousands of ICBM launches at a time from both sides.

As difficult as the above technical problems were to solve, none of them at
any time reached the level of crisis that the problems described below did.
These were political problems and, at least the first, would bring the project to
the eve of being cancelled.

Political troubles

In addition to technical problems, setious political problems were
encountered during this phase of the wargame software development. As any
introductory textbook on project management will state: the success of any
project is dependent upon support from the senior management of the
organization [14]. A lack of sensitivity to the political needs of AFWC senior
management created two problems the StratWar team was forced to solve.

Saving the project with a color X terminal

Roughly a year into development, the “operator cave” had been converted
into a test room for the emerging StratWar software. The operators had, in a
sense, tamed the wargame engine and were now focusing their efforts on
guiding the new user experience and beginning to develop the materials (i.e.,

19 of 33

PRACTIUM: THE STRATWAR WARGAME

player training and documentation) which would augment the software to
make up the complete StratWar exercise. During this time, senior
management started being shown the planning phase software by the
operators—who, like the programmers, were eager to show off the emerging
wargame. Senior management was impressed with the game but wondered
“why are the player forms only using two colors?”

The player input forms, developed using the Oracle SQL*Forms tool, ran
within the X terminal program on the Sun 38061 (i.e., a terminal window).
Even though the Sun workstations supported sophisticated color graphics,
the X terminal text was black and white—actually, any two colors could be
selected, but only two. Senior management had purchased the Sun 3861
workstations because they had stunning color graphics and they would not
allow the first 3 days of the StratWar wargame to use black and white player
input forms. This quickly became a gigantic problem for the development
effort with a series of heated meetings arguing the positions: “Just add color
to the player forms,” and “We can’t. Oracle*Forms can’t do that—it’s just
not possible!” This reached the point where the project was going to be
cancelled and “reset” to use technologies that could produce better colors.

Finally, when it was clear deadlock had been reached, a meeting was planned
to stop and re-plan the project. However, on the eve of that meeting several
of the programmers were explaining this situation to Capt Atwell and the
other system administrators who were confused about what was going on
and how the project could be killed due to a lack of color screens. As the
description of the problem was narrated, Capt Atwell interrupted, “but you
have the source code for the X terminal program don’t you? Just add colors
to it?”” 'This was an insight that had not occurred to any programmer on the
StratWar team—quickly a solution emerged: change the X terminal source
code such that a “gel”’-file could be given when it was started (“gel” as in the
use of colored plastic gels to color theater lights). This gel-file would contain
an 80x25 character block describing the color at each cursor position on the
terminal screen. Create a gel-file for each and every SQL*Forms player input
form and they would appear to be in color.

This solution worked and saved the project. Lt Halloran made the
modifications to the standard X terminal program to create the color X
terminal. Capt Johnston, who had focused on management until this time,
crafted the gel-files. The Oracle development team was not affected.

Not using the mainframe and the Saturday testing crisis

As the project headed for completion, and, in part, due to the color X
terminal crisis, Lt Col Ellertson became more interested in the robustness of
the StratWar software. He also became aware that the entire planning phase
of the wargame, three of its four days, did not use the Cyber mainframe at all.

20 of 33

PRACTIUM: THE STRATWAR WARGAME

Lt Col Ellertson was an experienced programmer but, like most senior
Government computer professionals of this time, was much more
comfortable with mainframe technology, such as the Cyber, than networked
workstations, such as the Sun 386i. He became increasingly concerned that
the reliance upon the Sun workstations would make the game unreliable and
prone to crashing. After all, from his point of view, the Cyber filled a room,
had on-site CDC maintenance and an army of computer operators to keep it
running. In contrast, the Sun workstations were tiny, had slow phone tech
support, were all over the building, and had only Capt Atwell to keep them
going. In addition, the AFWC Sun 3861 workstations had been delivered with
a bad batch of hard disks: roughly 40% had failed and had to be replaced by
Sun in the first 6 months after the workstations were installed.

A “Saturday Test” was scheduled to test the entire configuration of an actual
StratWar exercise and to stress it by introducing failures. Lt Col Ellertson
would have random Suns turned off and would observe how the software
responded—did killing one Sun cause lots of player rooms to be impacted?
Was each Sun a single point of failure for the entire wargame? The answer
was no—the software passed this test with no serious problems. The real
Achilles’ heal of the Suns, the Ethernet network through which
communications between the workstations passed, was never broken during
the Saturday test (and would never fail during any real StratWar exercise). Lt
Col Ellertson was convinced of the robustness of the StratWar design and
began to understand that computers like the Sun workstations would take an
expanding role in future wargaming software.

Midcourse phase wrap-up

Despite the technical and political problems that cropped up during the long
middle portion of the StratWar development the team made consistent
progress toward completing the project. There were far fewer long days and
the whole development team worked together in a synergistic fashion.

By 16 months into the development, a complete StratWar wargame had
emerged. The final two months would be filled with planning and
preparations for the first real StratWar exercise. Team moral remained high,
and in fact grew, as the date for the first exercise grew closer and the
remaining development tasks were completed.

Terminal phase

The last two months of the StratWar development were exciting and busy.
The team scrambled to get ready for the debut exercise with ACSC. More of
the ACSC faculty were introduced to the wargame and after negotiation
between AFWC and ACSC plans solidified around a 5-day exercise held
during a single week in the spring of 1990:

21 of 33

PRACTIUM: THE STRATWAR WARGAME

® Day 1: Training. Monday would be hands-on training for the ACSC
students. Before this day, student “player handbooks” (i.e., game
manuals) would be distributed to ACSC students to prepate them for
the time limited hands-on training. The player handbooks had been
authored by the operator portion of the StratWar development team
and comprised roughly 100 pages describing the general exercise
context and scenatio, user instructions for the “red” or “blue” player
portions of the software, and a reference for all the data used in the
game (e.g., weapon types, bases, etc.).

* Day 2—4: SIOP Planning. For three days, each team would, using the
SIOP planning forms and reports, develop a StratWar SIOP. This
represented the bulk of the exercise and was augmented by faculty
guidance and strategic discussions—creating a StratWar SIOP
required many trade-offs that were, by design, difficult for students to
make. At the end of day 4 the planning information would be run
through the automatic targeter by the “white” controllers.

® Day 5: SIOP Execution. Friday, the student teams would be placed in
the role of national command authorities and played out a tense
world situation. The students would monitor the strategic situation
on the Sun workstation using the map situation display. A single PC,
connected to the Sun workstation and acting as a text terminal, would
allow a team to send email to their opposing team and execute
options of their SIOP.

Due to the large number of ACSC students, two StratWar sessions would be
needed: a morning session and an afternoon session. The morning session
would have 11 “red” and 11 opposing “blue” teams, as would the afternoon
session. Each team contained roughly 15 students and faculty.

The team dealt with several challenges during this phase of the project. The
pressure was on for the StratWar developers to produce 2167A
documentation. Player on-line training during day 1—a requirement missed
by the programmers—needed to be supported. Finally, the actual StratWar
exercise with ACSC had to be executed.

Documentation and document-driven development

As the ACSC exercise drew closer, but throughout much of the software
development, the programmers were faced with increasing pressure from
functional branches (specifically configuration management, testing, and
computer operations) working for Lt Col Ellertson to produce 2167A
software documents. DOD-STD-2167A “Defense System Software
Development” [8] was the approach used for software development. DOD-
STD-2167A directed a document-driven waterfall software development

22 of 33

PRACTIUM: THE STRATWAR WARGAME

methodology—the progress of a software project was measured by what
documents had been completed not by how much of the software worked.
This methodology was not faithfully followed by the StratWar project
because of the good judgment of Lt Col Ellertson, who understood that
extreme “by-the-book™ interpretations of 2167A could cause a software
development project more harm than good.

Extreme interpretations of 2167A included banning any code development
until a full specification, design, and program pseudo-code had been written.
As a concrete example, such an extreme approach had produced the
wargaming engine. The contractor had, in fact, been mandated to produce
one line of pseudo-code for each line of FORTRAN. In the era before
structured control flow was common in commercial programming languages
the pseudo-code represented the structured version of the program while its
actual implementation would be some form of assembly language. By 1988,
even within conservative Government software development efforts, use of
higher level programming languages had made this type of situation a
historical curio.

Cyber FORTRAN, the language used to develop the wargaming engine,
supported structured control flow and the 1 line of pseudo-code to 1 line of
source code mandate created a “double-vision” within the FORTRAN code
as the below (contrived) example illustrates:

C LOCP MINTH FROM 1 TO 12
DO 20 MONTH=L, 12
C SUM= SUM+ DMX MONTH)
SUM = SUM + DM MONTH)
C END LOOP
20 CONTI NUE

In addition, the contractor, who had created the FORTRAN code using a
pseudo-code to FORTRAN pre-compiler, didn’t want the pseudo-code
removed from the wargaming engine source code (nor did they want to
provide the pre-compiler to the Government). It would be a long time after
the StratWar development was completed but eventually the pseudo-code
was removed from the wargaming engine. This was a good decision because
FORTRAN, as a standard language with commercial support and training
available for it, was far easier to maintain than the contractor pseudo-code.
The front-end development of StratWar, while required to use 2167A, would
not suffer as the wargaming engine did from an extreme interpretation of the
directive.

Due to the tight schedule and the technical judgment of Lt Col Ellertson the
StratWar front-end development produced little more than outlines of the
required 2167A documentation. The full set of documents for the StratWar

23 of 33

PRACTIUM: THE STRATWAR WARGAME

software were produced during a 4-month period after the first exercise was
completed (over the summer of 1990). One problem the development team
encountered during this effort was that 2167A proved ill-suited for software,
such as StratWar, that made widespread use of off-the-shelf software. 2167A
tacitly assumed that all the key components of the final software system were
developmental items or that they were previously developed by a government
project that had used 2167A. For example, how does one assure that the
non-existent software requirements specification for Oracle’s SQL*Forms
maps to and is consistent with the StratWar system specification?

The team used an automated off-the-shelf document publishing system,
called Intetleaf, to create the StratWar technical and user documentation. Use
of Interleaf was critical to the timely creation of StratWar documents—not
because of its editing capabilities per se, but because of its de facto capability
to manage configuration of documents being worked on by many people at
the same time.

The final utility of the StratWar 2167A documents is dubious; however they
did capture some useful design information including how all the software
components were put together to run an exercise. Combined with the
detailed and high quality user documentation created by the operators for the
“player handbooks,” StratWar ended up with a reasonable set of software
documentation; albeit sometimes scattered across several documents due to
its 2167A-derived organization.

Student player training

As the plan for training the ACSC students was discussed with the
programmers a problem was discovered: no provisions in the software had
been made to support on-line training for students. During the Monday
training day the ACSC students would get to try out and become familiar with
each part of the StratWar software: the SIOP planning forms, the graphical
map situation display, etc. To support this required the software to support
“hopping” between portions of the game—a problem because the
information required for the each step of StratWar was created in the
previous step. Capt Kross and Lt Hutchins worked with the operators to
populate a “training” Oracle database that would be complete enough to
allow students to bring up any planning form in any order they wished (and
to support multiple students trying out each form). Because it took hours to
execute, it was out of the question to invoke the automatic targeter during
student training. Therefore a “training” wargaming engine orders-file was
created that allowed a quick transition from hands-on use of the planning
forms to live use of the map situation display coupled with a running
wargaming engine simulation.

24 of 33

PRACTIUM: THE STRATWAR WARGAME

The StratWar 1990 exercise

The first 5-day StratWar wargame for 500 ACSC students occurred, as
planned, in spring 1990. It was an overwhelming success and was later voted
the “highlight of the academic year” by the ACSC students and faculty—a
first for any AFWC wargame. The entire development team assisted duting
the execution. The operators acted as “white” team controllers. The
programmers and system administrators acted as technical support staff.

Training and the entire SIOP planning phase went smoothly. The fourth
night of the game ended up running very late for the programmers and game
controllers, but not the ACSC students, because the automatic targeter had to
be run on the 22 Oracle instances containing the SIOP planning database (11
for the morning session and 11 for the afternoon session). Over the next
several hours, as each of the 22 automatic targeters finished, the programmers
and operators reviewed the output—most were declared ready for execution
day. However, mostly due to SIOP planning mistakes, a few had to have the
student’s SIOP plan altered by the game controllers and the automatic
targeter restarted. Despite a very late night, all the SIOPs were ready for the
simulation by the wargaming engine on Friday morning. The automatic
targeter was invoked from the “white” control room but actually ran in a
distributed fashion on the 22 Sun workstations located in the player “red” and
“blue” seminar rooms—this created an eerie flickering surreal scene in the
dark player seminar rooms as the disk light on each Sun quickly blinked on
and off for several hours. This was strange enough to cause the AFWC
security guards to inquire what was happening in the player seminar rooms.

Execution day, the most complex part of the StratWar exercise, went well.
Throughout the entire day only a single game had to be stopped and restarted
due to an unknown “freeze” of communication between the wargame engine
and the map situation display software. The restart only took a few minutes
and that game had no further problems.

Problems with the graphical user interfaces developed, primarily by Lt
Halloran, became apparent during execution day. Two examples were the
lack of an overview map and the lack of confirmation dialogs for critical
control actions on the wargame control interfaces.

The map situation display allowed zooming of its view to see a close-up of an
area of the map. The user interface problem encountered was: when the
students were in a zoom they could no longer see the entire map. This
caused at least one team to be wiped out when the other side launched all
their missiles during a time when the team had the map zoomed to watch
bombers flying (dispersing from a primary base to a remote base) in the
northern part of the US. Their first indication of the attack was when their
screens turned yellow (the map situation display painted yellow circles

25 of 33

PRACTIUM: THE STRATWAR WARGAME

indicating nuclear explosions)—when they zoomed out they found a mass of
destruction had been inflicted by the opposing side. Future wargames would
include a small overview map to keep situational awareness even when
focused on a small geographic area.

The second user interface problem involved the graphical controls for the
wargaming engine. The control screens didn’t include confirmation dialogs
for critical actions. During the execution day, one of the game controllers
had the Sun screen saver start-up. To cancel the screensaver he clicked his
mouse which just happed to be over the “terminate game” button of one of
the four StratWar games he was controlling. That one game quickly
shutdown and had to be restarted.

These user interface design flaws would probably not occur today. But it
would not be until 1991 that Visual Basic would be released for Windows and
bring graphical user interface development to a much wider practitioner
audience. In addition, by the mid-90s, books such as [5] and [18] were, and
still are, widely read by practitioners. Even in 1990 these problems could
have been uncovered through usability testing, but testing of StratWar
focused on functionality and the user interfaces had only ad hoc usability
testing.

Terminal phase wrap-up

StratWar, while successful, would have a very short lifecycle. The second
ACSC exercise would be held in spring of 1991—the last the author would be
involved with. The wargame was in-use for a few more years but by then the
changing world situation made it obsolete. The end of the cold war caused
changes to the ACSC curriculum that ended the requirement for StratWar.

26 of 33

PRACTIUM: THE STRATWAR WARGAME

Analysis

Building on the issues described in the above narrative, this section
undertakes a critical analysis of the project from the author’s point of view. It
has been over a decade since the project was completed but several of the
lessons that can be learned from “what went right” and “what went wrong”
on the StratWar project are timeless and can occur on any modern software
development effort.

What went right

StratWar worked and was a success. 'This is easy to overlook but many software
development efforts fail. In fact, as the narrative illustrates, StratWar had
many opportunities where it could have failed. The political ctisis of the color
X terminal (had SunView been used instead of X and we didn’t have the
terminal emulator source code) or the technical difficulties of orchestrating
the execution phase of the game (without having a new network-connected
mainframe appear just in time) could have caused the overall effort to fail.

Lesson: Even successful projects encounter serious crises. Don't give up
at the first sign of trouble—take responsibility and work toward solutions.

StratWar bhad, overall, throughout its development stable user requirements. The
operational vision for the StratWar wargame changed little between the first
day of the project and the actual ACSC exercise. A major shift in the vision
of the wargame would probably have at least delayed the first ACSC exercise
by a year.

Lesson: Reasonably stable requirements can mitigate the risk of a tight
software development schedule.

StratWar had an end goal, the ACSC exercise, to guide 7t. 'This helped the project
team avoid sub-optimization: effort expended to perfect one portion of the
project to the detriment of the overall project [14]. McConnell in [13] refers
to the problem of sub-optimization as “developer gold-plating.” Without this
strong goal it might have been easy to start “fixing” the wargaming engine or
to better integrate Oracle into the general CRES framework—both of which,
while interesting and seemingly beneficial to StratWar, would have delayed
overall progress on the project—probably causing the ACSC exercise
deadline to be missed. Sub-optimization is an insidious danger because it
appears beneficial to the project and provides project members with a feeling
of comfortable accomplishment—it is a way for the project team to avoid
confronting risk. When, several years after StratWar, I took over the
transiion of a 4 million SLOC PL/I system to Ada, I was forced to
restructure the entire effort and trash an entire year of work by the
development team due to a sub-optimization problem. The development

27 of 33

PRACTIUM: THE STRATWAR WARGAME

team had spent nearly a year creating several hundred pages of low-level data
flow diagrams from the legacy PL/I code using a commercial tool. The
creation of data flow diagrams had become a comfortable task that the team
members were good at. It had the added benefit that the PL/I maintainers
didn’t understand nor really care about the low-level diagrams so the
development team was rarely forced to interact with them on this task. The
idea that the data flow diagrams were simply a tool to understand and
document the legacy system had been forgotten. In fact, none of the
development team understood much about the overall capabilities of the
legacy PL/I system. Worse, instead of using the data flow diagrams to
facilitate communication with the maintainers they had used it to shut them
out of the work. Sadly, management had not noticed the problem as a steady
stream of impressive technical documentation was being produced by the
team. StratWar avoided this type of problem—perhaps in part because it was
developed with frequent interaction with its users (i.e., the operators and
ACSC representatives), but also, I believe, because the visible goal of the
ACSC exercise focused the team.

Lesson: Visible goals can help focus the team on the whole rather than the
parts and avoid the serious problem of sub-optimization.

StratWar bad an effective development teamr. 'The formation of an effective matrix
development team was a key reason the project succeeded. DeMarco and
Lister in [7] present ideas on how to “grow effective teams.” The StratWar
team exhibited several of the signs they present as evidence of an effective or
“jelled” team: a clear goal, low turnover, a strong sense of identity, and a sense
of eliteness. Several environmental and sociological factors allowed the
StratWar team to “jell” The climate at the start of the project helped.
Everyone involved with CRES was tired of waiting for the contractor to
deliver a working wargame and wanted to take action toward that goal. In
addition, the team was composed of (mostly) Air Force officers—giving an
additional shared culture that helped team formation. As Air Force officers
each member of the team was invested in a successful outcome. If StratWar
emerged as a success it would further the career of each team member.
However, it is critical to note that an effective team didn’t appear the day the
tasking letter from Col Ware appeared on each of team member’s desk. As
the narrative of the “boost phase” describes, the initial technical work was
often frustrating and chaotic. In my experience, this eatly chaos ends up
benefiting the project—as long as it subsides over time as it did in StratWar.
It is a serious warning sign, in my mind, if the first several weeks of a non-
trivial software development effort are cordial and ordered. On the other
hand, it is also a serious warning sign if chaos continues unabated and
progress and technical solutions don’t emerge. The development of the
StratWar development team as a group is consistent with several models of
group development such as Cog’s ladder model [16], i.e., polite stage, why

28 of 33

PRACTIUM: THE STRATWAR WARGAME

we’re here, bid for power, constructive, and esprit, and the Tuckman model
[17], i.e., forming, storming, norming, and performing.

The team was talented and was willing to work hard to learn in areas where
their knowledge was weak. Without talented people any project, software or
otherwise, is doomed to failure no matter how high the motivation and moral
of the people. The problem of social loafing [12], the tendency of individual
group members to reduce their work effort as the group they belong to
increases in size, was avoided by keeping the team size small and by an eatly
assignment of clear roles and responsibilities. As the narrative notes, at many
times various team members contributed creative solutions to hard problems
that threatened the project—most dramatically illustrated by Capt Atwell and
the idea for the color X terminal. The team developed a solid identity around
the StratWar project and, to a degree, a sense of eliteness. They had been
hand selected by senior management to create a first of its kind wargame.
Finally, the StratWar team experienced little personnel turn-over during the
development (Lt Col Burns did retire before the first exercise occurred). In
subsequent projects, I have found personnel turn-over, especially at key
points in the project lifecycle, to be a serious problem. If you start to attend
lots of going away lunches—be wortied.

Lesson: Effective teams take time to coalesce. Conflict is a normal part of
the teambuilding process. Software practitioners must be open and
motivated to learn new knowledge (e.g., technical or domain) all the time.

The StratWar development team confronted project risks. Consider the eatly
identification of the tremendous amount of technical knowledge required to
be learned on-the-job by the programmer team. Constraining the design of
the software to “limit learning” was an unorthodox approach that successfully
mitigated this risk. In several subsequent efforts I have found introspection
on the real capabilities of a team to benefit technical design—the most
elegant technical design is of no value if your team is not capable of
understanding and building it. A better option, when feasible, is to allocate
time and funds for training the technical team.

Risk management as a core part of the software development process was
proposed by Boehm in [3] as part of his spiral model of software
development. However, risk management is often presented in terms of
estimating probabilities of loss for identified risks and their potential impact in
time or cost [12, 13]. I have noted that “‘comfortable” work is often low-risk
work and driving a team to deal with “uncomfortable” work eatly in a project
acts as an effective risk mitigation approach.

Lesson: Mitigate risks early in the project—avoid the natural tendency to
focus on “comfortable” (i.e., low-risk) work early in the project.

29 of 33

PRACTIUM: THE STRATWAR WARGAME

StratWar made effective use of off-the-shelf software. 'The use of X and Oracle were
key to the successful development of the software on schedule. Use of
Interleaf increased the quality of the project documentation. Every software
development effort I have been involved with since StratWar has made
increasing use of off-the-shelf software—it is often the only way a project can
be made feasible (i.e., without the engineering savings gained by use of the
off-the-shelf product the project would be too costly to develop at all). The
StratWar team did a good job of examining the industry situation in its
selection of X and Oracle—to their benefit. The lesson here is to ensure that
off-the-shelf software choices are deliberate decisions by the team—not
technical accidents. A subsequent project I was part of illustrates what can go
wrong. This project involved several distinct software development teams in
distributed locations. When I joined the project, management had no idea
what off-the-shelf products were in use—"“whatever the programmers had on
their machines” was the management attitude. After discussion with all the
teams, I discovered that two C++ compilers, two Ada95 compilers, two
design tools, and three scripting languages were being used at the various
locations. The cost for this lack of off-the-shelf software management to the
project was hundreds of thousands of dollars in training costs and in off-the-
shelf software licenses to develop and maintain the software that could have
been avoided.

Lesson: Make sure off-the-shelf software choices are deliberate
decisions—not technical accidents.

StratWar had no political “enemies.” Unlike many development projects I have
subsequently been involved with, the StratWar project had no political
“enemies”—groups within the organization that would benefit from, and
actively lobby for, the failure of the project. In this category I include only
groups within the same organization or company as the development team—
not competing companies. Corporate politics, either intentionally (perhaps to
foster a sense of internal competition) or unintentionally can create “‘enemies”
of a software development. This can become a setious issue when the
software is replacing a current operational system and parts of an organization
are worried about the impact of the change on manpower and funding.
When political enemies exist, care must be taken to continuously understand
and, to a degree, manage senior management perceptions of the project.
Honest, frequent, and if possible face-to-face updates to senior management
about any potential problems are an effective mitigation—avoid surprises.
The StratWar development did not face this problem. Even during the color
X terminal crisis no one was really pleased about the crisis and everyone was
relieved when an acceptable technical solution was found.

Lesson: Realize political “enemies” to your project may exist—keep senior
management informed about problems and avoid surprises.

30 of 33

PRACTIUM: THE STRATWAR WARGAME

What went wrong

The StratWar development team didn’t understand senior management’s needs. Even in
1990 it was well understood that a difference exists between the user of a
software system and its customer [10]. Our users were the AFWC operators
and the ACSC students and faculty. Our customers were the AFWC
leadership. The overwhelming success of the wargame provides evidence
that we listened to our users. However, the sagas of the color X terminal and
the “Saturday Test” also provide evidence we didn’t listen to our customer—
the project survived but the team paid a high price in time and frustration.

At the time of the StratWar development the discipline of software project
management did not exist in the Air Force as it does for modern software
development projects. As we have seen, 2176A-style document driven
development was used—tempered somewhat by judgment. The modern Air
Force approach to Project Management Reviews would have helped inform
and involve senior management in the StratWar development. As it was, the
project manager, as an operator, viewed the software as a black box. Hence,
working visible capability was his sole measure of software progress. This is
good because working software capability is a real metric and bad because
with only this metric cost and schedule are often pootrly managed. For
StratWar, the functional manager, Lt Col Ellertson, was expected to manage
within the black box—however the 2167A approach drove him to document
counting augmented by informal discussions of technical work and progress.
This approach proved effective for StratWar, but was very ad hoc. A better
thought out software development process (as opposed to document driven
development) was an emerging idea in practice at this time—the initial
textbook on the CMM [11] was published during the StratWar development
(as was [3]). However, in its interaction with the users to guide the software
development and inclusion of users as part of the development team, i.e., the
operators, the StratWar development embraced, to a degree, some of the
modern ideas espoused by extreme programming [4].

Lesson: Work to elicit critical senior management requirements—realize
what is important to you may be very different than what is important to
them. Use Project Management Reviews, or a similar technique, to inform
and stay in contact with senior management.

The contractor architecture of CRES' was trusted for StratWar. 'The architecture and
high-level design of StratWar was subject to little analysis because, at the start
of the project, it mirrored very closely the contractor approach to CRES—the
same basic configuration just with better graphics than the PC could provide.
This was a mistake: trusting an untried architecture directly led to the
problems of duplicate data during testing of the automatic targeter and, more
seriously, the long rocky road to achieving a solid technical solution to
orchestrating the wargaming engine during the execution phase. The idea

31 of 33

PRACTIUM: THE STRATWAR WARGAME

that a system’s software architecture [15] should be designed, documented,
and analyzed is better understood today than it was in 1989. Today, standard
modeling languages such as UML [9] as well as focused textbooks on
software architecture, such as [2] and [6], provide concrete techniques
practitioners can use to develop and document a system’s software
architecture. However, even today, these techniques are not ubiquitous.
StratWar serves as a concrete example of the serious technical problems that
can emerge when the software architecture of a non-trivial software system is
poortly understood and receives little attention.

Lesson: Understand, document, and analyze your software’s architecture.

All the Sun 3861 workstations were purchased before the project began. Because the
only apparent impact to the project was that the automatic targeter ran
somewhat slowly during the ACSC exercise, this could be perceived as a
minor problem. However, this is a very serious mistake for any project to
make. Hardware purchases should be phased with the software development
effort to lower risk—in terms of both invested capital and hardware
capability—and to gain greater benefits from Moore’s law and competition
within the off-the-shelf computer hardware market. StratWar should have
purchased only enough Sun 3861 workstations for development and initial
testing—then later in the project purchased the machines for production use.
For StratWar, this approach would have allowed the cheaper purchase of
more capable workstations around 14 months into the project. In reality, the
386i workstations were first upgraded to SMB of memory for the 2 ACSC
exercise (to speed up the automatic targeter) and replaced two years later with
SPARCstation 2 workstations.

Lesson: Purchase off-the-shelf computer hardware as late as possible in a
project to lower risk and exploit Moore’s law—both in terms of invested
capital and hardware capability.

Conclusion

The narrative and analysis of the StratWar wargame development provide a
case study of the issues faced by software practitioners during a real-world
software development project—even a successful one like StratWar. Expect
and anticipate problems, use judgment and teamwork to solve them and learn
from past projects, like StratWar, whenever possible.

Acknowledgements

Thanks to Mark Kross and Bart Atwell who, as original members of the StratWar
development team, helped out my memory and provided insightful critiques of my analysis.
Aaron Greenhouse and Bill Scherlis helped shape the writing into something understandable
to an audience who didn’t participate in the project.

32 of 33

PRACTIUM: THE STRATWAR WARGAME

References
[1] Air Force Wargaming Institute web site at http:/www.cadre.maxwell.af.mil/wg

[2] Bass, Clements, and Kazman, Software Architecture in Practice. 2" edition,
Addison-Wesley, 2003.

[3] Boehm, A Spiral Model of Software Development and Enbancement. IEEE Computer,
May 1988, pp 61-72.

(4] Beck, Extreme Programming Explained. Addison-Wesley, 2000.
[5] Coopert, Abont Face the Essentials of User Interface Design. IDG, 1995.

[6] Clements, et al. Documenting Software Architecture: 1 iews and Beyond.
Addison-Wesley, 2003.

[7] DeMatco and Lister, Pegplesware: Productive Projects and Teams. Dorset House, 1987.

[8] DOD-STD-2167A, Defense Systen Software Development. on-line at
http://www2.umassd.edu/SWPI/DOD/MIL-STD-2167A/DOD2167A.html

(9] Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Ianguage.
3d edition, Addison-Wesley, 2004.

[10] Gause and Weinberg, Exploring Requirements: Quality before Design.
Dortset House, 1989.

[11] Humphrey, Managing the Software Process. Addison-Wesley, 1989.

[12] Karau and Williams, Socza/ loafing: A meta-analytic review and theoretical integration.
Journal of Personality and Social Psychology, 65(4), 1993, pp 681-7006.

[13] McConnell, Rapzd Development: Taning Wild Software Schedules.
Microsoft Press, 1996.

[14] Meredith and Mantel, Project Management a Managerial Approach. 4% edition,
John Wiley & Sons, 2000.

[15] Shaw and Garlan, Software Architecture: Perspectives on an Enserging Discipline,
Pearson Education, 1996.

[16] Squadron Officer School Curriculnm (Maxwell AFB, Ala.: Air University, 1987), 3130
R-1 through R-2 and 3160 R-1 through R-2.

[17] Tuckman, Develgpmental sequence in small groups. Psychological Bulletin, 63, 1965,
pp 384-399.

[18] Winograd, Bringing Design to Software. Addison-Wesley, 1996.

33 of 33

